
作为一名到岗不久的老师,教学是我们的工作之一,借助教学反思我们可以拓展自己的教学方式,那么什么样的教学反思才是好的呢?下面是小编为大家整理的分数的乘法教学反思,仅供参考,希望能够帮助到大家。
分数的乘法教学反思11.明确教材的地位和作用。这部分内容是在学生理解并掌握分数乘法的意义以及分数乘整数的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复杂的分数应用题也是在它的基础上扩展的。因此,使学生掌握这类问题的解答方法对他们今后进一步学习较复杂的分数应用题具有重要的意义。
2.应用数形结合的思想。用线段图或其他方式的示意图帮学生理解“淘气的苹果是小红的二分之一”。
3.运用类比迁移的方法。学生理解了6的二分之一的意义,在此基础上,提出“6个苹果的三分之一是多少”这一问题,让学生独立解决,由于学生有了前面的基础,学生解决起来水到渠成。
4.营造民主和谐的教学氛围。教学中予以学生开放的空间,从复习中选数计算到用不同的方法解应用题,到练习中求小兰、小强的年龄,始终将学生置于享有充分民主和谐的氛围中,置于生动活泼、极富个性的数学活动中,提高了学生学习的兴趣。
5.发挥团队合作精神。教学中以小组合作为主,学生在合作讨论中得到了不同程度的发展。
6.鼓励学生用多种方法解题。通过用多种方法解题并进行比较,让学生亲身体会乘法解决问题的优越性。
另外要给学生提供充分的思维空间和交流机会,充分发挥学生的主体作用。
分数的乘法教学反思2分数乘法应用题教学反思“求一个数的几分之几是多少”的乘法应用题是学生已经掌握了分数乘法的计算方法和分数乘法的意义上进行学习的。它是分数应用题中最基本的、最基础的,不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,学生掌握这种应用题的解答方法具有重要的意义。在本课教学中,我努力做到了以下几点:
一、复习铺垫,为新课做好准备
本节课中,找准单位“1”,写出数量关系式是解分数应用题的关键。因此在新课之前,我出示了这样一组练习做铺垫:
(背投出示)
1、列式解答
(1)20的1/5是多少?(2)6的3/4是多少?
求一个数的几分之几是多少,用乘法来计算。
2、找单位“1”,说关系式
(1)、男生占总人数的2/3。
(2)、红花占总数的5/6。
(3)、一本书,读了3/4。
(4)、一条路,还剩下1/4没有修。
为本节课的新知识做好了准备。
二、创设严谨的思维训练,提高学生的思维和分析能力。
小学生思维处于无序思维向有序思维的过渡阶段。因此,教师要积极地引导和帮助学生过渡这个阶段,训练思维的条理性。在教学这节课时,我特别注重让学生分析表示数量间关系的句子,也就是关键句,在关键句中找出哪个量是单位“1”,哪一个是比较的量,然后分析分率的意义,根据题意画线段图,根据线段图列出等量关系,寻求已知量和未知量,根据关系进行解答。
三、注重孩子的全体参与,让孩子在动手操作中理解题意。
解答分数问题的关键是弄清楚题中的数量关系,这也是课堂教学的重难点。运用直观的线段图来表示题中的数量关系,有助于学生理解题意。在这节课上,我让每个孩子动手,在理解题意的基础上画出线段图,然后让学生观察、分析、比较,鼓励学生互相讨论,得出哪种线段图最完整,能够看图就能知道题的意思。这一环节使每一位学生都积极认真的参与到学习之中。
这节课也有不尽人意的地方。因为这一段学习的都是分数乘法,学生更多的时候不认真审题,分析数量关系,往往想也不想看到分数就与整数相乘,就知道列乘法算式,好像在套模式。看来学生对分数乘法的认识还是不那么理解。我想,学习了分数除法应用题,与除法进行对比练习后,学生可能才会有更深刻的理解。
分数的乘法教学反思3教学就是一个摸索的过程,年轻人有朝气但缺经验,老教师有经验但缺热情。虽然教了几次六年级对于很多内容的教法却一直没有定型也不能定型。
原来对于分数乘法只是从做法上进行教学师生都感觉很简单,一般第一单元测试基础差、思维差的同学也能考到90多分,所以为了节约时间,让学生不只是乘,而把乘法这个单元一带而过,和分数除法一起学习,在对比中让学生明白道理,选择做法。但综合到一起学习,学生刚开始也是错误百出,只能机械地告诉学生单位1已知用乘法,单位1未知用除法,加上学生约分出现约分不彻底,成了一锅浆糊慢慢理。不过,这样好像也能比进度慢的老师成绩好一点,但对于基础特差的学生似乎有点残酷。
我决定在分数乘法这一单元让学生彻底明白道理,深入每位学生心里,一步一个脚印地学习。于是在学新课之前,我先对五年级的公因数、公倍数问题进行复习,发现这个难点依然值得深入复习,学生对互质数等基本概念都忘了,特殊数的最大公因数更是错误百出。深入对约分环节打好基础,也为整个小学阶段的复习打下坚实的基础。
然后让学生应用中多说道理,同桌互为老师讲一讲道理,避免学生理解表面化,真正理解了分数乘整数的意义。分数乘分数让学生折一折、涂一涂,操作中自然理解更深入,学习更有兴趣。虽然多耗点时间,但这样学习才能真正面向全体,基础更扎实,后续学习更高效而有兴趣。
知其然更要知其所以然,说着容易,但体现在教学的每一步并不容易。
分数的乘法教学反思4本单元的例3是通过求一个数的几分之几是多少的实际问题,让学生进一步完善对分数乘法意义的认识,巩固对分数与整数相乘的计算方法的理解。教学时我力求做到以下几点:
(1)难点分散。
本节课学生对例3分数句的理解是一个难点,教学时我用多媒体创设情境吸引学生的注意力,借助直观图的形象帮助学生理解分数句,分散了难点。在完成例3教学的过程中,发现学生在我的有效引导下对数量关系的叙述还是正确、清晰的,但在完成第14题填空时,特别是第2题还是出现了错误。于是我又结合线段图让学生来理解数量间的关系。
(2)注重学生的参与。
整堂课的教学,我都让学生观察、分析、比较,鼓励学生互相讨论,大胆的说关系式,大胆的尝试练习,发现每一位学生都积极认真的参与学习。
尽管如此,也有不尽人意的地方。我发现这一段的学习,都是分数乘法,学生更多的时候不认真审题,分析数量关系,往往想也不想看到分数就与整数相乘,就知道列乘法算式,好像在套模式。看来学生对分数乘法的认识还是雾里看花。我想,这儿还没有分数除法应用题,变式的形式太有限了,只有与除法进行对比练习,学生才会感到困难。看来得考虑补充些对比练习。
分数的乘法教学反思5例2教学稍复杂的求一个数的几分之几是多少的问题。是在例1理解和掌握了解决求一个数的几 ……此处隐藏7602个字……象),可以说是一个抽象概括(数学建模)的过程,而数学基础知识应用的过程(抽象——具体),可以说是一个演绎推理(对模型的解释与应用)的过程。在从具体到抽象的过程中学生认识的是数学基础知识的本质属性,在抽象到具体的过程中学生将认识到数学基础知识的应用范围(概念的外延),这是将起到深化理解概念和灵活应用概念的作用。在此过程中,学生将把数学基础知识的成立条件与具体问题中的条件进行比对,进行一系列的思维活动,由于小学生的思维处于发展的阶段,他们的内部言语并不发达,是片断的、条理性不强的,所以用学生的外部语言表述来促进其内部言语的整合与条理,这就是重视“说理训练”的意义所在。
(2)、图形表征的训练。数与形是数学研究的两大对象,他们相互作用,互为表里。每一个形中多蕴含着一定的数量关系,而每一个数又都能通过图形直观的描述和反映。教学实践是我们有了这样一个认识:学生对数学知识的获得或是应用数学知识解决具体的问题,往往都是完成对数学语言、数学符合、数学图形的翻译过程。因此,有意识的训练学生用图形表征已学的数学知识,将有利于学生深刻的理解和掌握,并能为学生进一步学习积累数学活动的经验。
(3)、计算技能的训练。当一个数学问题的解答思路确定之后,接下来的就是通过计算得到正确答案的过程。无论解决问题的思路多么的完美,如果不能准确、熟烂的计算,那么学生将不会完美的解决一个问题。再有对于比较复杂的问题,如果能通过口算或估算出没一个关键的数值,往往对解决问题有着至关重要的促进作用。因此,我们在教学中应该重视对学生基础口算的训练,加强估算能力的培养。
3新课程背景下,数学训练的地形式
数学训练的内容应该突出基础性和应用性。数学训练的形式不应该是单一的、枯燥的,应该结合训练的内容和学生的具体情况突出趣味性、灵活性、竞争性、多样性。
根据以上的思考自己在这三节课的教学是这样安排的:
第一节:
1通过计算训练整合分数乘法法则。
2口算训练(直接写得数),通过观察发现分数乘法的因数与积之间的关系,在通过图形表征,应用分数乘法意义理解这种关系,深化对分数乘法意义的认识。
3单位转化,初步应用分数乘法意义解决实际问题。
第二节:
1解决具体问题(求一个数得几分之几是多少),感知分数乘法意义的应用。
2集体交流,剖析解题的思路。
3专项训练,理解分数条件(图形表征、语言叙述)。
4巩固练习,渗透对应思想
分数的乘法教学反思13例2的教学是重点帮助学生看出单位“1”的量,找到单位“1”,理解男运动员占九分之五的含义,那女运动员占几分之几?那单位“1”的几分之几是多少怎么做呢?对于这个例题学生都掌握的很好,也发现了这种题型的特点,单位“1”都是两个量组成的已知单位“1”的数量和其中一个量的关系求另一个数量,这种题型的通用方法就是可以先求另一个量的关系,然后用求一个数的几分之几是多少用乘法来计算。通过课后的反馈学生都完成的不错。
本节课主要内容是对例3的教学,让学生重点理解“今年的班级数比去年多六分之一”的含义,弄清楚把哪个量看做单位“1”去年班级数的六分之一是什么?去年的班级数乘六分之一是什么?有的学生对于这个确实不是很理解,这个例题是两个量之间的关系,其中一个量是单位“1”所以画线段图时要画两条。
学生对于线段图的掌握还是可以的,如果没有线段图的时候可能就是出现理解的偏差,分析原因可能是在第二单元求一个数的几分之几是多少没有理解。所以课后我经常画线段图来帮助学生女理解,也教会学生用线段图帮助他们分析题中的数量关系。
分数的乘法教学反思14我上了一节分数乘法应用题。课后我感到既有成功的喜悦也有不足,具体体现在以下几个方面:
一、数形结合的思想
由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得中观重要了纵观教材中,数形结合思想的渗透也有着不同的层次,例如分数乘法 ( 一 ) 和分数乘法 ( 二 ) 中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在分数乘法 ( 三 ) 中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的结合起来,只有完整的是学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
二、是充分重视学生“说”的训练。
在以前应用题的教学中,对“说”的训练重视的不够,表现为学生只会做题不会说,这个片断,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法,以及方法是怎样想出来的。引导学生把思考过程有条理的说出来,为了深化学生的思维,避免死记硬背、机械模仿,解题后要求说出算式的依据,在说中及时得到反馈,进行矫正、补充,这种“说”的训练,不仅能帮助学生正确分析数量关系,提高分析、解决问题的能力,还能促进语言与思维的协调发展。
三、是很好地解决了“大部分学生会,怎么教“的问题。
因为学生已经掌握了一个数乘分数的意义,在此基础上学生本节内容并不难,为此我引导学生主动探索,培养他们学习应用题的兴趣。在以往的教学中,往往要求学生死记数量关系,找出谁是单位“ 1 ”,谁是分率,知道要求是分率对应的问题用乘法计算等,学生只会用一种方法,长此以往,对灵活解题是不利的,在这节课中,问题开放,采用四人小组合作,引导学生探索、相互研究,大胆发表不同的见解,让学生在“说”中学到知识,增长本领。
分数的乘法教学反思15《分数乘法(二)》其实是进一步探索并理解分数乘整数的意义,并能正确计算,能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。根据第一课时学生作业反馈情况,我调整了教学模式,让学生先学后教,课堂上学生讨论明白了:谁是单位“1”,单位“1”已知的,用乘法计算(虽然这部分知识目前没有涉及),我认为适当渗透有利今后的教学。
学生的理解也各有千秋,这体现了“不同的人学习不同的数学”,有的学生用分数加法来理解分数的意义以及计算方法;有的学生能够从整数和分子相乘,分母不变。
从编者意图可以看出:用图形来理解分数乘整数的意义是重要的,于是在计算前充分感知涂图形的过程,为后面计算打下基础。有了几节课的铺垫,学生在计算过程中没多大的错误,说明了学生对算理的理解比较清晰,很多学生对约分还是做得比较好。
但在一位学生的作业中,清楚看到这个学生没有把约分后的分母做分母,依然是原来的分母做分母。经过辅导,学生明白了道理,同时反应课堂上还存在了优生抢了课堂的风头。




